Improved spatial resolution and range retrieval accuracy with SAR altimeters over the ocean and the coastal zone

Christine Gommenginger*(1), Cristina Martin-Puig(2), Salvatore Dinardo(3)
R. Keith Raney (4), Paolo Cipollini (1), P. David Cotton(5) and Jürgen Benveniste(3)

*Contact: cg1@noc.soton.ac.uk

OVERVIEW

We consider the performance of SAR altimeters (also known as Delay Doppler Altimeters, DDA) to measure sea level and significant wave height over the open ocean and coastal regions. This work was performed as part of the ESA-funded SAMOSA project led by SatOC Ltd.

This study aims to quantify the improvement in altimetric range and significant wave height retrieval accuracy of DDA compared to conventional pulse-limited altimeters. In order to retrack SAR altimeter waveforms over water surfaces, a new theoretical retracker for multi-looked SAR ocean waveforms was developed, implemented and tested by the SAMOSA team (Section 2). The SAMOSA SAR retracker forms the basis of the operational algorithm to be used to retrack SAR mode ocean waveforms on the GMES Sentinel-3 Surface Topography Mission.

Prior to the launch of Cryosat-2, analyses were based on simulated ocean waveforms in SAR and LRM mode generated by the Cryosat Mission Performance Simulator (CRYMPS). The CRYMPS simulator was applied to 3D ocean surfaces featuring realistic ocean wave fields. Here, we examine the results of retracking CRYMPS SAR and LRM waveforms for one simulated scenario over idealised coastal conditions (Section 3).

Finally, following the launch of Cryosat-2, we now consider LRM and SAR mode waveforms from Cryosat-2 over water surfaces (Section 4). The Cryosat-2 waveforms in SAR and LRM mode are compared to the simulated CRYMPS data. First results of applying the SAMOSA SAR retracker to Cryosat-2 SAR mode waveforms over water are presented.

3 - CRYMPS Simulated waveforms: an idealised Coastal zone scenario

Figure 3 shows the surface DEM devised to represent a scenario over idealised coastal conditions, used as input into CRYMPS. Figure 4 shows a top view of the resulting CRYMPS L1B 20Hz waveforms in LRM and SAR mode in this 12 second scenario. The CRYMPS LRM and SAR waveforms were subsequently retracked with the Brown ocean retracker and the SAMOSA SAR retracker respectively (Figure 5). The retrieved epoch and significant wave height are shown in Figure 6.

What is Delay Doppler Altimetry ?

Delay Doppler Altimetry was first proposed by K.R. Raney (1998). It consists of a nadir-looking altimeter with the capability for high PRF to ensure coherent pulse-to-pulse capability (SAR mode). Some expected benefits of DDA over water include finer along-track spatial resolution (~ 300m) and a two-fold improvement in range retrieval accuracy compared to conventional pulse-limited altimeters.

Based on the same hardware as conventional altimeters, DDA altimeter can operate in two modes (Figure 1): (a) a Low Rate Mode (LRM) with continuous generation of pulses at a low pulse-repetition frequency (PRF) to ensure independent successive pulses and enable incoherent averaging. (b) a SAR mode (SAR) characterised by bursts of pulses emitted at high PRF to ensure pulse coherence and Doppler beam selection capability to increase the number of looks.

Both altimeters on Cryosat-2 and the Sentinel-3 Surface Topography Mission feature delay Doppler capability. In the case of 53-STM, SAR mode will be used over ocean regions of high spatial variability, such as the Western Boundary Currents and coastal regions.

2 - The SAMOSA SAR Ocean retracker

SAR altimeter waveforms over water surfaces are much peakier than conventional LRM waveforms. A new theoretical model was developed from first principles within the SAMOSA project (Martin-Puig & Ruffin, 2009). In its analytical form, the model depends on geophysical parameters such as slope, significant wave height normalised radar cross section, mispointing angle and a parameter linked to the root mean square slope. Figure 2 shows the dependence on significant wave height of the single-look Delay Doppler Map at zero Doppler frequency.

The single-look theoretical model was combined with multi-looking algorithm to form the prototype SAMOSA SAR ocean waveform retracker used here.

Retracking CRYOSAT-2 SAR waveforms over water surfaces

Following the launch of Cryosat-2 in March 2010, we investigate Cryosat-2 L1B 20Hz waveforms over ocean and inshore waters in LRM and SAR mode. Figure 7 shows where the two types of products are typically found. Unfortunately, unlike CRYMPS, it is not possible to compare LRM and SAR mode directly over the same location. Figure 8 shows top-down views of the LRM and SAR waveforms for nearby tracks over the Gulf of Thailand. Figure 9 shows a SAR L1B waveform over water retracted with the SAMOSA SAR retracker, showing that the SAMOSA model offers a good fit to the Cryosat-2 SAR data over water.

Figure 8 - Example of Cryosat-2 L1B 20Hz SAR waveform retracted with the SAMOSA SAR retracker. Note that the CRYMPS waveforms seem to show less noise than the CRYMPS simulated data in Figure 5.